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ABSTRACT 
Metal additive manufacturing (AM) has become increasingly popular to fabricate complex, light-weight, and high-
efficiency components for use in the aerospace industry; however, there are inherent limitations in existing AM 
processes that have delayed widespread implementation for aviation applications. Porosity is just one example of the 
key characteristics that can impact the mechanical strength of an AM part. This research focuses on a real-time 
feedback system to detect and correct defects during the powder bed fusion process of aluminum alloys. In this study, 
AlSi10Mg coupons were built using various AM parameters.  The build process was continuously monitored via a 
high-frequency in-situ infrared camera which had been integrated into a commercial metal powder bed fusion 
machine. Porosity information (pore location and size) of the as-built AM coupons were characterized using x-ray 
computed tomography. The monitoring results were post processed and correlated with porosity location, indicating 
a strong relationship between abnormal sensing signal and pore formation. This demonstrates that the real-time 
abnormal sensing signal can be a good indicator for identifying pore formation during the AM process. Additionally, 
Sentient Science Corporation (Sentient) used its advanced modeling technique to simulate the AM build process 
regarding the melt pool geometry, porosity, and microstructure. Prediction of porosity level at different AM 
parameters aligned well with the experimental results. Advanced modeling results showed that careful selection of 
AM settings is required to correct in-process defects. Repair parameters must be tailored to achieve satisfactory 
correction of individual defects. Combining the in-situ defect monitoring and advanced simulation capabilities enables 
the creation of a closed-loop feedback control system that provides automatic defect detection and correction action 
in powder bed additive manufacturing process. 
 
 

INTRODUCTION 1  

Army rotorcraft components require structural integrity to be 
flight safe. Traditional manufacturing methods have been 
refined over time to achieve high reliability such as casting 
processes used for gearbox housings or machining used for 
mounts, fittings, and pitch-link horns. Recent progress with 
use of additive manufacturing (AM), especially powder bed 
fusion processes, has demonstrated strong capability to 
manufacture complex components as a single part, which may 
save manufacturing labor, cost, and reduce production time. 
In addition, the application of optimized topology in design 
of AM parts can have the added benefit of weight savings 
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unfeasible using traditional manufacturing processes. 
However, there are inherent limitations in existing AM 
processes that have delayed widespread implementation for 
aviation applications.  

Among those limitations, process-induced defects are one of 
the main concerns for current metal AM technology. Various 
types of defects would be expected in AM processes, such as 
porosity, un-melted particles, grain anisotropy, balling 
effects, material inhomogeneity, residual stress, and distortion 
[1]. The relationship between AM process parameters and 
part quality have been studied and reported extensively [2]. A 
high-energy density in AM process will cause the balling 
effect that results in high surface roughness and 
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microstructural in-homogeneities, while a low-energy density 
usually causes material discontinuities, such as porosity and 
delamination of adjunctive passes/layers. Appropriate process 
parameters are essential to build defect-free parts, and most 
commercial metal AM machines have built-in parameter 
settings which are supposed to print defect-free parts. 
However, in an actual printing process, inherent variability of 
AM processes (e.g. random distribution of AM powder, melt 
pool flow, denudation process) usually cause deviation from 
ideal experimental conditions, resulting in process defects. To 
improve process stability, in-process monitoring is a well-
known approach to monitor the process variation, and then 
make timely correction to eliminate process defects.  

Several works in literature have reported the studies of 
monitoring AM processes. Different sensors, such as 
thermocouple, pyrometer, thermal camera, high-speed 
camera and so on, have been attempted to monitor abnormal 
signals from AM processes which would help identify any 
potential defect. Details of those works can be found in the 
review literature [2-4]. Most current sensors are used to 
monitor the melt pool geometry, but they are not able to 
monitor the defects, such as pores. Also, those sensors are not 
fast enough to capture the printing details at micro time scale, 
and they may also have degraded monitoring accuracy when 
operating with complex AM processes (e.g. disturbance from 
metallic debris, rapid transition of material states). Recently, 
John Hopkins University Applied Physics Laboratory 
(JHU/APL) reported research on monitoring the relative 
temperature change during the build using a high-frequency 
infrared (IR) camera. This approach was able to detect in real 
time unwanted process deviations. It measured unexpected 
differences in process temperature that is possibly indicative 
of an undesirable process change [5]. Lawrence Livermore 
National Lab (LLNL) has recently reported a study of 
machine-learning-based monitoring of laser powder bed 
fusion process [6]. Sets of melt pool data were acquired using 
visual imaging equipment, and then a machine-learning-based 
model was developed, trained with those data, and evaluated 
for capability to predict melt pool track widths. This machine-
learning-based monitoring was demonstrated to enable on-
the-fly assessment of laser track welds. This research provides 
a new idea to potentially identify process defects in real time.  

As discussed above, most relevant works are limited to 
monitor the AM process, and sensing data were usually ex-
situ examined. In this circumstance, process-induced defects 
may be identified by post analyzing sensing data, but 
correcting those defects using post build processes (e.g. hot 
isostatic pressure, heat treatment), if possible, would be time 
and/or cost prohibitive. This study aims to advance current 
technique by building a close-loop feedback control system 
that enables monitoring and defect correction in real time for 
powder bed fusion of aluminum alloys. In order to achieve 
this goal, several key issues need to be addressed: 1) how to 
accurately identify defects at each printed layer; 2) how to 
choose optimal process parameters to correct specific defects; 
3) how to manage / process enormous data in real time, 
including processing in-situ monitoring signals in real time, 
dynamically determining optimal repair parameter sets in real 

time; and 4) integrating relevant hardware and software in 
AM machine’s control system.  

In this paper, efforts of in-situ monitoring process defects and 
optimizing process parameters through advanced simulation 
will be presented. Relevant experimental validation will be 
presented to demonstrate the technical feasibility of a close-
loop feedback AM system for monitoring and correcting 
process defects. Plans for developing a prototype machine 
will be also discussed. The paper will be outlined as following 
sections: 1) in-situ monitoring of laser powder bed fusion 
process in printing aluminum coupons; 2) material 
characterization to examine process-induced defects; 3) data 
analysis to correlate sensing signals with process-induced 
defects; 4) advanced AM process modeling and validation; 5) 
constructing a process window for optimal defect-repair 
parameters; and 6) follow-on work 

 

IN-SITU MONITORING OF LASER 
POWDER BED FUSION PROCESS USING 

INFRARED CAMERA 
Total of 15 AlSi10Mg cube coupons were built with various 
parameters using a laser powder bed fusion process machine 
(EOS M290 shown in Fig. 1). The entire printing process was 
monitored using a high-frequency long wavelength infrared 
(IR) camera that was integrated in the EOS M290 machine. 
Experiments were performed at JHU/APL. Details of the 
experimental set-up and relevant results are described below:  

 

Thermal sensor selection and set-up 

There have been a variety of implementations of in‐situ 
sensors for metal AM processes [2]. True‐temperature 
measurements using thermal cameras have received 
significant attention. However, these systems are very 
expensive, difficult to calibrate properly, difficult to integrate 
into metal AM systems, and can only see a small area of the 
build. Here, our approach is to use relative‐temperature 
thermal cameras. The relative temperature approach will not 
be useful for computational model validation, but it could 
measure unexpected differences in process temperature that 
may be indicative of an undesirable process change.  

Fig.1  EOS M290 laser powder bed fusion system at 
JHU/APL. 
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The infrared (IR) camera used to view the AM process was 
integrated by JHU/APL from commercially‐available 
components. At the heart of the camera was a “sensor engine” 
based on a quantum well infrared photodetector (QWIP) focal 
plane array (FPA) in an integrated dewar/cooler assembly 
(IDCA) which uses a Stirling cycle mechanical cooler to cool 
the FPA to 65 K. This camera is sensitive in the long 
wavelength infrared (LWIR, wavelengths between 8 μm and 
12 μm) spectrum. This spectral range was chosen because of 
the inherently low thermal contrast for blackbody emission in 
this band. That is, the rate of change of emitted power from 
an object for a change in its temperature is low compared to 
other regions of the spectrum. Unlike the detectors in the 
LWIR microbolometer cameras that have come into 
widespread use, the detectors in this FPA are photon detectors 
and therefore are able to capture very fast phenomenology 
(detector time constant < 1 ns). By contrast, microbolometer 
cameras are thermal sensors with time constants on the order 
of 10 ms. The full frame format of the FPA was 640×512 
pixels but the camera was set up to only run the central 
128×128 region of the array in order to enable a high frame 
rate (1.313 kHz) to be achieved and the integration time used 
for the experiment was 49 μs. The top of the AM chamber has 
a port that is normally blanked off but for this experiment the 
anodized aluminum blank was replaced by a zinc selenide 
(ZnSe) window which was specified to have at least 70% 
transmission in the pass‐band of the camera. The setup is 
shown in Fig. 2.  

 

AM process parameters and coupon geometry  

A total of 15 AlSi10Mg coupons were built using various AM 
parameters. The building process was continuously 
monitored via a high-frequency in-situ infrared camera which 

had been integrated into a commercial metal powder system. 
Each coupon has the dimension of 5mm × 5 mm × 10 mm. 
Table 1 lists the 5 different process parameters in this study. 
Each parameter was repeated 3 times (“A1” represents 
parameter A 1st repeat). Sample #C were built using vendor-
provided receipt and used as the benchmark. Its nominal 
energy density was 100%. Other samples (A, B, D, E) were 
built using modified nominal energy density in order to create 
“artificial” defects. Laser power and scan speed were varied 
to achieve different energy density.  

Table 1. AM process parameters. 

Sample #  Energy Density 
(J/mm3) 

Nominal Energy 
density 

A 12.48 25% 
B 24.97 50% 
C 49.93 100% 
D 74.87 150% 
E 99.87 200% 

a Specific parameter is not included due to vendor intellectual 
property 

 

Fig.2  In-situ IR camera set-up. 

Fig.3  Examples of IR images at different times. Color 
intensity represents radiance value. (“TALO” = Time 
since first indication of laser) 
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Collect IR camera data 

The entire build process has been recorded using the IR 
camera through the build of 76 min 9 sec (4569 s) at a frame 
rate of 1300 Hz. 25 mm focal length f/2.3 lens gave a pixel 
size at the target of 0.76 mm (~6.5 pixels across each part). 
The IR camera was calibrated using a cavity blackbody 
source. There is a total over 6 million frames of images, 
resulting in ~30GB of data. Fig. 3 shows some examples of 
thermal images at different time steps.  TALO in the figure 
means the time since first indication of laser. The vertical line 
seen in the imagery after about T+1200 s is due to an artifact 
in the camera itself that could not be fully corrected out. The 
area of artifacts will not be considered in the following 
analysis. 

 

MATERIAL CHARACTERIZATION  
Material characterization of AlSi10Mg coupons were focused 
on porosity examination, since porosity is the type of defect 
that causes the most concern. Two analytic methods, namely 
optical microcopy analysis and x-ray computed tomography 
(XRCT) analysis were used to examine all coupons built 
using the 5 AM conditions. Details will be discussed below: 

Optical microscopy analysis  

AlSi10Mg coupons were mounted in epoxy after the AM 
build process. Coupons were ground using SiC papers down 
to 1200 grit, and then polished using diamond suspension 
which started at 9 µm and finished at 0.5 µm. Final polishing 
was performed using 0.02 µm colloidal silica. The orientation 
of each coupon during grinding is shown in Fig. 4. 

 

Fig. 5 shows the optical microscopy of the cross section of 5 
coupons processed using increasing laser energy density. 
Porosity can be seen in all coupons. A1 has the largest degree 
of irregular shaped pores due to lack of fusion at low laser 
energy density.  Porosity is minimized in C1 which was 
processed at near optimal laser energy density.  D1 and E1 
have increasing amounts of spherical pores compared to 

A1/B1 samples. Those spherical voids were likely generated 
under keyhole phenomenon which formed at high laser 
energy density.  From Fig. 5, we can clearly tell the difference 
of void size and geometry at different AM conditions. Lack-
of-fusion voids are irregular in shape, and have much lower 
sphericity than keyhole voids. It should be noted that the top 
region of all coupons look defect-free, because the last three 
built-layers use the vendor’s default parameter (#C) which is 
different from the designated condition. This is from the AM 
machine default configuration, and applies to all other 
samples (B-E).  

 

 

X-ray Computed Tomography (XRCT) analysis 

XRCT was performed on 10 coupons (A2, A3, B2, B3, C2, 
C3, D2, D3, E2, E3) to identify the presence of porosity as 
well as individual pore location, size, and geometry. The 
scans were performed on a North Star Imaging (NSI) X050 
system and the volume data reconstructed using NSI efX-CT 
software. The resulting voxel resolution is 7.7 microns.  Fig. 
6 shows the XRCT coordinate system with respect to coupon 
geometry (Fig. 6a). An example of a cross-section image 
along the z-axis is also shown (Fig. 6b). 

Fig.4  Coupon preparation for optical 
microscopy characterization. 

Fig. 5  Cross section of 5 coupons processed using 
increasing laser energy density  

A1 B1 

C1 D1 

E1 
500 µm 
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Automated defect recognition (ADR) was performed using 
Volume Graphics VGStudio MAX. ADR analysis results in a 
comprehensive numerical representation of the porosity 
within the sample. Fig. 7 shows representative XRCT results 
with an overlay of the ADR results onto the 3D and cross-
section images.. The porosity is seen in color in both the 3D 
and cross section images. The color scale is determined by the 
pore volume (smaller volumes are blue and larger volumes 
are red). Additionally, each individual defect or pore  can be 
analyzed with respect to its location and size. The results will 
be correlated with corresponding IR thermal images to 
establish the relationship of “process signal – defects” which 
will be discussed in the next section. Also, XRCT provides 
cumulative porosity results for each sample as shown in 
Fig. 8. The average porosity aligns with observation in Fig. 5. 
The vendor’s default parameter (#3) results in the least 
porosity. In lack-of-fusion conditions (#A and #B), porosity 
level increases with decrease of laser energy density, and 
significant porosity volume occurs at nominal laser energy 
(25% of optimal process condition). When nominal energy is 
above 100% (#D and #E), porosity increases with increased 
laser energy.   

 

Fig.6  (a) XRCT coordinate system; (b) example of 
cross-section image across the z-axis. 

(a) 

inscribed  
sample name 

(b) 

Fig. 7  Representative XRCT results showing porosity of 
different coupons.  Colored pixel indicates pore location 
and size, white dash line represents boundary of sample. 

B2 

3D image Cross section 

3D image Cross section 

C2 

3D image Cross section 

D2 
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DATA ANALYSIS TO CORRELATE 
SENSING SIGNALS WITH PROCESS-

INDUCED DEFECTS 
The entire AM build includes 336 layers with over 6 million 
images recorded. A total of 30 images from the 10th layer to 
300th layer at increments of 10 layers were analyzed in detail. 
At each layer, the image at the time just before the deposition 
of powder for the following layer was exported. Similarly, 
XRCT data was exported into ASCII format as well. It 
recorded every suspected void and its size, location, and 
geometry. Then, those results were interpreted using two 
methods: 1) a statistical analysis to correlate the overall 
porosity level with sensing signal, and 2) individual void 
analysis to evaluate the relationship between abnormal signal 
and pore formation.  

Statistical analysis 

Fig. 9 shows the sensing signal along the distance in white 
label at different building times. For each curve, the peak 
region represents signals reflected from the un-melted powder 
region between each coupon, and valley region represents 
sintered coupons. It is found at each curve, each peak value is 
similar with another, while the valley value varies across 
different coupons. There is a general trend that coupons made 
by lower laser density (e.g. #A) lead to a higher valley value.  

Additionally, processed signals of each sample were averaged 
at each layer. Fig. 10 shows the signal value that is averaged 
across each layer. The signal gets stronger when more and 
more layers are built. As seen in the figure, there are clear 
differences among those samples which were built at different 
energy levels.   

 

 

Individual void analysis 

Individual void analysis was also performed. It started by 
analyzing the XRCT results by sorting the suspected voids 
from largest diameter to smallest diameter. The top 5 largest 
voids in each sample are used for analysis. So, a total of 50 
voids have been analyzed. For each void, its coordinate was 
extracted first, and then mapped into the coordinate system of 
the thermal image. It is noted here that each sample 
orientation in the build plate has been recorded during the AM 
build process, so it is feasible to map the defect coordinates in 
the thermal image. The criterion of “detecting” a defect is 
based on abnormal signal variation at the void location. If the 
sensing signal at the void location is abnormal and exceeds a 
critical value, it was considered a “hit”, which confirmed that 
sensing signal can reflect the defect. Otherwise, it was 
considered a “miss”. Fig. 11 showed a typical “hit”, which is 
represented by red dot. A void defect in sample D2 was 
selected, and its coordinates were identified in the XRCT 
results. Based on the defect’s Z coordinate, a relevant image 

Fig.8  Cumulative porosity volume for different AM 
samples (5 AM conditions, 2 repeats).  IR

 c
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Fig. 9  Radiance vs. distance profile at different times. 

Fig. 10  Averaged monitoring signal at specific layers. 

IR
 c

am
er

a 
sig

na
l 



 

Sentientscience.com  

frame will be selected for future analysis. Further, based on a 
defect’s X and Y coordinates, a line that crosses the defect’s 
location will be determined, and the corresponding sensing 
signal can be plotted. Using this criterion, initially 11 out of 
50 voids have been identified in the thermal image, while 
most voids were not detected. This is due to several reasons: 
1) samples A and samples E were built via unrealistic AM 
conditions, and they have too many voids across the entire 
samples which are very difficult to detect using current 
detecting framework; 2) coupons were tilted in the thermal 
camera, which causes some misalignment between sample 
defects and image pixel; 3) some voids were located near the 
sample edge and powder bed, so significant error occurred; 
and 4) current image pixel size is around 0.76 mm, which is 
relatively large compare to the void size.  

Therefore, in the second analysis, voids from unrealistic AM 
conditions (samples A & E) were excluded, and effects of 
sample tilting, image artifact (samples C2 & B3 after 1200 s), 
and edge effect were considered. The hit rate of the void was 
approximately 76% (22 voids out of total 29 valid voids). It 
should be noted that the monitoring accuracy can be further 
increased by improving the resolution of thermal camera. 

 

 

ADVANCED AM PROCESS MODELING 
AND VALIDATION 

A series of computational modeling were performed using 
Sentient’s DigitalClone® technique. Sentient’s 
DigitalClone® is a physics-based computational modeling 
and design framework that simulates the microstructure of 
different components and their behavior, calculates internal 
stresses caused by different applied loading conditions, 
accumulated internal damage resulting in crack nucleation 
and propagation, and investigates the performance and life 
prediction. In the past few years, Sentient’s DigitalClone® 

has been enhanced to include an ICME (integrated 
computational materials engineering) modeling framework 
for part qualification in metal additive manufacturing (AM). 
This physics-based multiscale model can be used to qualify 
material and process parameters and requires minimal 
calibration. Specifically, the DigitalClone® model can take 
key AM process parameters (e.g. laser power, scan speed, 
hatch strategy, layer thickness) as inputs, and simulate part-
level distortion and residual stress, as well as the 
microstructure (e.g. grain structure, porosity) of as-build 
parts, and fatigue performance when the part is used in the 
field. In this study, Sentient’s DigitalClone® technique is 
used to optimize defect-repair parameters. For any specific 
defect, repair parameters need to be customized in order to 
sufficiently correct existing defects while avoiding the 
formation of new ones. Different types of simulation were 
performed for a comprehensive analysis. Those simulations 
include:  1) melt pool dimension modeling; 2) microstructure 
and porosity modeling; and 3) defect repair modeling 

Melt pool dimension modeling 

3-dimensional (3D) heat transfer finite element analysis 
(FEA) was used to simulate the melt pool dimension. In the 
analysis, a physics-based heat source model was used that 
considers major AM process parameters, including laser 
power, scan speed, hatch space, layer thickness, etc. This will 
correlate the process parameter with final melt pool 
dimension, which eventually guides the defect repair action.  

In addition to the physics-based heat source model, a solution-
dependent-variable (SDV) material model was also used to 
dynamically update material’s properties due to materials 
state transition (powder-liquid-solid) in AM building process. 
Material properties significantly change when AM powder 
transitions to liquid / solid state during the printing process, 
and the property change will significantly affect simulation 
accuracy. Sentient’s SDV material model can dynamically 
adapt material properties to different material states, and this 
ensures the simulation accuracy. Both heat source model and 
material model were implemented in the commercial FEA 
package ABAQUS to conduct the heat transfer analysis. 
Table 2 shows the physical property of AlSi10Mg used in this 
simulation. Fig. 12 shows the finite element model to simulate 
the temperature and materials state transition. Powder layer 
was first melted due to laser heating, and then solidified in the 
rapid cooling stage when the laser moved away. The 
temperature history of each node can be obtained. 

Table 2. AlSi10Mg properties used in the simulation. 

Material 
state  

Density 
(kg/m3) 

Thermal 
conductivity 

(W/m*K)  

Specific heat 
(J/kg×K) 

a Powder 1350 0.5 915 
Solid 2680 110 915 

a Powder property is estimated. 

Fig. 11  Detection of individual pore using sensing 
signal. 
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Using the above thermal model, a set of single-track cases 
with different process parameters has been simulated. It 
intends to investigate the effect of process parameters on the 
melt pool size and geometry. A comprehensive understanding 
of melt pool geometry and size will allow good judgement for 
defect repair conditions. Table 3 lists the process parameters 
at different simulation condition.  

Table 3. Process conditions for single-track simulation. 

Case # Laser power 
(W) 

Scan speed 
(mm/s) 

Layer thickness 
(µm) 

1 125 1400 30 
2 150 1400 30 
3 200 1400 30 
4 250 1400 30 
5 300 1400 30 
6 200 700 30 
7 200 1000 30 
8 200 1800 30 
9 200 2000 30 

 

Fig. 13 shows the resulting melt pool geometry at different 
conditions. As the laser power increases, the melt pools 
became larger and there size increases in all three dimensions 
(length, width, and depth). When increasing the laser scan 
speed, the melt pool tends to become shallower but longer. 
Fig. 14 shows quantitative analysis, indicating that the melt 
pool length is most sensitive to process parameters and the 
melt pool width is the least sensitive.  The various melt pool 
sizes and geometries at different conditions should not be 
neglected when performing defect repair. 

 

 

 

Fig. 12  Finite element model to simulate the 
temperature and material state transition (power-liquid-
solid). 

Fig. 13  (a) effect of laser power on melt pool geometry; 
(b) effect of laser scan speed on melt pool geometry. 

(a) 

(b) 

Fig. 14  Quantitative analysis of melt pool size at 
different laser power and scan speed. 

(a) 

(b) 
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Microstructure and porosity modeling 

In addition to single-track simulation, multi-layer and multi-
scan simulation was performed to simulate the microstructure 
and porosity. Actual process conditions listed in Table 1 were 
used in the simulation. This simulation was done by two steps: 
1) thermal modeling in ABAQUS to simulate temperature 
history; and 2) microstructure modeling in Sentient’s in-house 
code to simulate porosity and grain structure.  

In thermal modeling, a total of 20 scans were simulated at 
each condition (4 layers, 5 scans / layer). Fig. 15 shows the 
representative peak temperature contour from parameters #C 
in Table 1. The color represents the peak temperature of each 
location during the printing process. The other four conditions 
(#A, #B, #D, #E) show a similar contour but have different 
magnitudes. The peak temperature increases when increasing 
laser density  from #A to #E.  

 

Fig. 16 shows the selected 2D cross section of 3D model. The 
gray area represents the melted and re-solidified region. 
Simulation results clearly showed the lack of fusion in 
samples #A and #B, which aligned well with optical 
microscopic results. Other samples are fully melted, and 
therefore, it didn’t show lack-of-fusion voids in those 
simulations. It is noted that the porosity due to excessive 
energy density (samples #D and #E) cannot be captured by 
commercial FEA software. That porosity will be considered 
in Sentient’s in-code microstructure model.   

 

Sentient’s microstructure model is a physics-based model that 
predicts the grain size and morphology. The microstructure 
model was coupled with thermal modeling, and it is capable 
of predicting microstructure evolution in additive 
manufacturing. Fig. 17 shows a general procedure of 
modeling the microstructure. Thermal modeling is first 
performed using 3D finite element analysis to calculate the 
temperature evolution within AM build process. Then, the 
temperature history in the cross-section of the FEA domain 
will be projected to a 2D microstructure domain with refined 
grid size. Finally, melting and solidification behavior will be 
simulated in the microstructure model.  

 

Fig. 15  Representative 3D contour of peak temperature. 
Fig. 16  Cross section of  3D thermal modeling. (gray 
color represents melted and re-solidified area).  

#A 

#B 

#C 

#D 

#E 

Fig. 17  General procedures to simulate microstructure 
using Sentient’s physics-based model. 
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After importing the simulated temperature history from 
thermal modeling, the grain structure and relevant porosity 
were predicted in the microstructure model for all five 
conditions. Fig. 18 shows the simulated microstructure 
results. Color represents grain orientation which ranges from 
0° to 90 °. The black area represents voids. As seen from the 
figure, predicted grain structures mostly show columnar 
grains, which agrees well with experimental findings [7]. 
Also, both lack-of-fusion porosity and keyhole / boiling 
porosity were predicted. The prediction of porosity agrees 
with experimental results in two aspects: 1) at energy density 
levels below optimal value, porosity decreases with increase 
of energy density; while at energy density levels above the 
optimal value, it increases with an increase of energy density; 
and 2) voids appear more spherical at high energy density 
samples (#D and #E) than the low energy density samples (#A 
and #B).  

Fig. 19 compared the predicted porosity levels to 
experimental results. For the predicted porosity level there is 
good agreement with experimental results in most cases, 
except for sample #B which over-predicted the porosity. This 
is possibly because condition #B is near the transition zone 
from lack of fusion to fully melt, and the current thermal 
model is not developed well enough to capture such 
transition. This thermal model can be improved by calibrating 
the model coefficients through building more coupon 
samples. 

 

 

 

Defect repair modeling 

After validating the microstructure model, repairing artificial 
defects via laser re-melting technique were computationally 
tested using different parameters. Firstly, an initial printing 
process was simulated. Certain process parameters were 
intentionally selected to generate lack-of-fusion porosity as 
shown in Fig. 20. As seen in the image, lack-of-fusion voids 
occur between two neighboring melt pools. Then, defect 
repair via laser re-melting was simulated after printing each 
layer and before adding a new powder layer. During the laser 
re-melting process, the layer hatch was offset from the initial 
hatch in order to target the void region as shown in Fig. 21. 
Table 4 lists the original build parameters, and 3 different 
repair parameters. In the defect repair parameters, repair #1 
uses the same parameters as the original build, but with the 
offsetting hatch as shown in Fig. 21. Repair #2 and repair #3 
increases the laser power to 200 W and 250W, respectively.   

 

Fig. 18 Simulated microstructure of 5 AM conditions 
used in this study. 

Fig. 19  Comparison of simulation and experiment 
regarding porosity of 5 conditions.  

Fig. 20  Simulation of initial build with artificial lack-
of-fusion porosity. 

Lack of fusion voids Power: 125 W 
Speed: 1675 mm/s 
Hatch: 97.5 µm  
Layer thickness: 30 µm 
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Table 4. Process parameters for defect repair. 

Case # Laser 
power 
(W) 

Scan 
speed 

(mm/s) 

Layer 
thickness (µm) 

0 
(original build) 

125 1675 30 

1 125 1675 30 
2 200 1675 30 
3 250 1675 30 

 

Fig. 22 shows 3D modeling results from the original build (4 
layers) and repairs (2 layers) using three conditions. As seen 
from simulation results, repair case 1 used the same build 
parameters, and there were very limited effects to fix the void.  
Once increasing the laser power to 200 W, as in case 2, about 
50% of the pores have been fixed via laser re-melting. Once 
further increasing laser power to 250 W, as shown in case 3, 
all of the pores are repaired, showing a fully dense part. This 
set of simulation indicates that appropriate laser repair 
parameters need to be determined to fix the in-situ defects. 

 

CONSTRUCTING PROCESS WINDOW FOR 
OPTIMAL DEFECT-REPAIR 

PARAMETERS 
As discussed above, appropriate laser repair parameters are 
required to fix the in-situ defects without causing additional 
defects. Therefore, a process window needs to be created prior 
to the actual AM build, so the optimal laser repair parameters 
can be immediately determined based on size and geometry 
of any void. Additional simulation was performed to obtain a 
comprehensive study of parametric effects on melt pool size 
and porosity. Laser power and laser scan speed will be used 
as adjustable parameters for real-time laser repair purpose in 
this study, because they are two of the adjustable parameters 

Fig. 21 Schematic of hatch spacing in defect repair via 
laser re-melting. 

Hatch offset 

Fig. 22 Defect repair modeling via laser re-melting 
using different parameters 
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that need minimal control and configuration. Other AM 
parameters (e.g. powder layer thickness, spot size) will be 
fixed. Based on experimental coupon samples under 5 
conditions (Table 1), additional laser parameters in simulation 
were limited to the set that has nominal energy density 
between sample B (50%) and sample D (150%). Any other 
nominal energy density beyond this limitation has proven to 
result in high porosity as shown in samples A and E. 
Therefore, 36 additional simulation conditions have been 
designed as shown in Table 5.  

Table5. Simulation conditions for constructing 
optimal process window. 

Case # Laser power 
(W) 

Scan speed 
(mm / s) 

Nominal energy 
density 

P1S1 P1 S1 51% 
P1S2 P1 S2 57% 
P1S3 P1 S3 65% 
P1S4 P1 S4 70% 
P1S5 P1 S5 76% 
P1S6 P1 S6 83% 
P2S1 P1 S1 64% 
P2S2 P1 S2 72% 
P2S3 P1 S3 83% 
P2S4 P1 S4 89% 
P2S5 P1 S5 97% 
P2S6 P1 S6 105% 
P3S1 P1 S1 72% 
P3S2 P1 S2 81% 
P3S3 P1 S3 93% 
P3S4 P1 S4 100% 
P3S5 P1 S5 108% 
P3S6 P1 S6 118% 
P4S1 P1 S1 80% 
P4S2 P1 S2 90% 
P4S3 P1 S3 103% 
P4S4 P1 S4 111% 
P4S5 P1 S5 120% 
P4S6 P1 S6 131% 
P5S1 P1 S1 86% 
P5S2 P1 S2 97% 
P5S3 P1 S3 110% 
P5S4 P1 S4 119% 
P5S5 P1 S5 129% 
P5S6 P1 S6 141% 
P6S1 P1 S1 94% 
P6S2 P1 S2 105% 
P6S3 P1 S3 120% 
P6S4 P1 S4 130% 
P6S5 P1 S5 141% 
P6S6 P1 S6 153% 

a Laser power increases from P1 to P6, and scan speed 
decreases from S1 to S6. Actual values are not shown due to 
intellectual property reasons.  

 

A total of 36 conditions have been simulated in Sentient’s 
process model and microstructure model. In each simulation, 
the melt pool size and porosity were analyzed. Fig. 23. shows 
the representative results at 3 conditions (lower energy 
density, moderate energy density, and high energy density). 
Simulation results clearly show different temperature and 
porosity results at different laser powers and speeds. By 
incorporating the results from all 36 conditions, process 
windows for printing AlSi10Mg were plotted as shown in Fig. 
24. In each figure, the x-axis represents laser power, and the 
y-axis represents laser scan speed. The contour represents the 

Fig. 23 Representative simulation results at (a) low 
laser energy density (P1S1); (b) moderate laser energy 
density (P3S4); (c) high laser energy density (P5S5). 

(a) 

(b) 

(c) 

Porosity 
13.21%  

Porosity 
0.02%  

Porosity 
4.70%  

Process modeling  

Microstructure modeling 
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intensity of objects (e.g. melt pool width, melt pool depth, and 
porosity). These process windows provide a clear guideline to 
choose appropriate parameters to repair the voids in real time. 

 

 
FOLLOW-ON WORK 

The work described above has successfully demonstrated the 
technical feasibility of in-situ monitoring the pore formation  
in an aluminum alloy during a powder bed fusion process. It 
also showed that appropriate process parameters are required 
to correct any defect. The follow-on work is to fully integrate 
the in-situ defect monitoring and correcting technique to 
develop a prototype AM machine that has a closed-loop 
feedback system which can automatically detects and repairs 
defects during printing. To successfully achieve this goal, the 
technical barrier of acquiring and processing enormous 
amounts of sensing data in real time needs to be addressed. 
There is also a need to solve the problem of dynamically 

determining optimal repair parameters in real time and 
feeding commands to the machine control system. Sentient is 
currently working with research institutes, an AM machine 
vendor, as well as industrial original equipment manufacturer 
(OEM) to address those technical barriers and integrate those 
techniques to build a prototype AM machine with close-loop 
feedback control capability.  

 

CONCLUSIONS 
This study demonstrates the technical feasibility of the in-situ 
monitoring of defects and optimizing process parameters via 
advanced simulation. Key results are listed below: 

1) Sensing signal captured by a high-frequency IR camera 
correlates with porosity defects well in powder bed 
fusion process of aluminum alloy. Such sensing signals 
can be used as an indicator to identify process-induced 
defects in a powder bed fusion process. 

2) Porosity defects are affected by laser energy density, with 
low energy density resulting in lack-of-fusion voids that 
have irregular shape, while high laser energy density 
leads to keyhole / boiling voids which tend to be spherical 
shape.  

3) Sentient’s multiscale physics-based modeling technique 
considers the effect of process parameters (e.g. laser 
power and scan speed) on melt pool geometry, 
microstructure, and porosity. A process window can be 
generated using advanced simulation to optimize the 
process parameters. 

4) The current capability of defect monitoring and advanced 
simulation are presented. A technical path has been 
identified to demonstrate the feasibility of a closed-loop 
feedback AM machine to in-situ monitor and correct 
defects for an aluminum alloy component in a powder 
bed fusion process. Follow-on work is described to 
successfully achieve this goal.  

Author contact: Behrooz Jalalahmadi 
bjalalahmadi@sentientscience.com  
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