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ABSTRACT

Metal additive manufacturing (AM) has become increasingly popular to fabricate complex, light-weight, and high-
efficiency components for use in the aerospace industry; however, there are inherent limitations in existing AM
processes that have delayed widespread implementation for aviation applications. Porosity is just one example of the
key characteristics that can impact the mechanical strength of an AM part. This research focuses on a real-time
feedback system to detect and correct defects during the powder bed fusion process of aluminum alloys. In this study,
AlSi10Mg coupons were built using various AM parameters. The build process was continuously monitored via a
high-frequency in-situ infrared camera which had been integrated into a commercial metal powder bed fusion
machine. Porosity information (pore location and size) of the as-built AM coupons were characterized using x-ray
computed tomography. The monitoring results were post processed and correlated with porosity location, indicating
a strong relationship between abnormal sensing signal and pore formation. This demonstrates that the real-time
abnormal sensing signal can be a good indicator for identifying pore formation during the AM process. Additionally,
Sentient Science Corporation (Sentient) used its advanced modeling technique to simulate the AM build process
regarding the melt pool geometry, porosity, and microstructure. Prediction of porosity level at different AM
parameters aligned well with the experimental results. Advanced modeling results showed that careful selection of
AM settings is required to correct in-process defects. Repair parameters must be tailored to achieve satisfactory
correction of individual defects. Combining the in-situ defect monitoring and advanced simulation capabilities enables
the creation of a closed-loop feedback control system that provides automatic defect detection and correction action
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in powder bed additive manufacturing process.

INTRODUCTION

Army rotorcraft components require structural integrity to be
flight safe. Traditional manufacturing methods have been
refined over time to achieve high reliability such as casting
processes used for gearbox housings or machining used for
mounts, fittings, and pitch-link horns. Recent progress with
use of additive manufacturing (AM), especially powder bed
fusion processes, has demonstrated strong capability to
manufacture complex components as a single part, which may
save manufacturing labor, cost, and reduce production time.
In addition, the application of optimized topology in design
of AM parts can have the added benefit of weight savings
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unfeasible using traditional manufacturing processes.
However, there are inherent limitations in existing AM
processes that have delayed widespread implementation for
aviation applications.

Among those limitations, process-induced defects are one of
the main concerns for current metal AM technology. Various
types of defects would be expected in AM processes, such as
porosity, un-melted particles, grain anisotropy, balling
effects, material inhomogeneity, residual stress, and distortion
[1]. The relationship between AM process parameters and
part quality have been studied and reported extensively [2]. A
high-energy density in AM process will cause the balling
effect that results in high surface roughness and
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microstructural in-homogeneities, while a low-energy density
usually causes material discontinuities, such as porosity and
delamination of adjunctive passes/layers. Appropriate process
parameters are essential to build defect-free parts, and most
commercial metal AM machines have built-in parameter
settings which are supposed to print defect-free parts.
However, in an actual printing process, inherent variability of
AM processes (e.g. random distribution of AM powder, melt
pool flow, denudation process) usually cause deviation from
ideal experimental conditions, resulting in process defects. To
improve process stability, in-process monitoring is a well-
known approach to monitor the process variation, and then
make timely correction to eliminate process defects.

Several works in literature have reported the studies of
monitoring AM processes. Different sensors, such as
thermocouple, pyrometer, thermal camera, high-speed
camera and so on, have been attempted to monitor abnormal
signals from AM processes which would help identify any
potential defect. Details of those works can be found in the
review literature [2-4]. Most current sensors are used to
monitor the melt pool geometry, but they are not able to
monitor the defects, such as pores. Also, those sensors are not
fast enough to capture the printing details at micro time scale,
and they may also have degraded monitoring accuracy when
operating with complex AM processes (e.g. disturbance from
metallic debris, rapid transition of material states). Recently,
John Hopkins University Applied Physics Laboratory
(JHU/APL) reported research on monitoring the relative
temperature change during the build using a high-frequency
infrared (IR) camera. This approach was able to detect in real
time unwanted process deviations. It measured unexpected
differences in process temperature that is possibly indicative
of an undesirable process change [5]. Lawrence Livermore
National Lab (LLNL) has recently reported a study of
machine-learning-based monitoring of laser powder bed
fusion process [6]. Sets of melt pool data were acquired using
visual imaging equipment, and then a machine-learning-based
model was developed, trained with those data, and evaluated
for capability to predict melt pool track widths. This machine-
learning-based monitoring was demonstrated to enable on-
the-fly assessment of laser track welds. This research provides
a new idea to potentially identify process defects in real time.

As discussed above, most relevant works are limited to
monitor the AM process, and sensing data were usually ex-
situ examined. In this circumstance, process-induced defects
may be identified by post analyzing sensing data, but
correcting those defects using post build processes (e.g. hot
isostatic pressure, heat treatment), if possible, would be time
and/or cost prohibitive. This study aims to advance current
technique by building a close-loop feedback control system
that enables monitoring and defect correction in real time for
powder bed fusion of aluminum alloys. In order to achieve
this goal, several key issues need to be addressed: 1) how to
accurately identify defects at each printed layer; 2) how to
choose optimal process parameters to correct specific defects;
3) how to manage / process enormous data in real time,
including processing in-sifu monitoring signals in real time,
dynamically determining optimal repair parameter sets in real
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time; and 4) integrating relevant hardware and software in
AM machine’s control system.

In this paper, efforts of in-situ monitoring process defects and
optimizing process parameters through advanced simulation
will be presented. Relevant experimental validation will be
presented to demonstrate the technical feasibility of a close-
loop feedback AM system for monitoring and correcting
process defects. Plans for developing a prototype machine
will be also discussed. The paper will be outlined as following
sections: 1) in-situ monitoring of laser powder bed fusion
process in printing aluminum coupons; 2) material
characterization to examine process-induced defects; 3) data
analysis to correlate sensing signals with process-induced
defects; 4) advanced AM process modeling and validation; 5)
constructing a process window for optimal defect-repair
parameters; and 6) follow-on work

IN-SITU MONITORING OF LASER
POWDER BED FUSION PROCESS USING
INFRARED CAMERA

Total of 15 AlSil0Mg cube coupons were built with various
parameters using a laser powder bed fusion process machine
(EOS M290 shown in Fig. 1). The entire printing process was
monitored using a high-frequency long wavelength infrared
(IR) camera that was integrated in the EOS M290 machine.
Experiments were performed at JHU/APL. Details of the
experimental set-up and relevant results are described below:

(=3
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Fig.1 EOS M290 laser powder bed fusion system at
JHU/APL.

Thermal sensor selection and set-up

There have been a variety of implementations of in-situ
sensors for metal AM processes [2]. True-temperature
measurements using thermal cameras have received
significant attention. However, these systems are very
expensive, difficult to calibrate properly, difficult to integrate
into metal AM systems, and can only see a small area of the
build. Here, our approach is to use relative-temperature
thermal cameras. The relative temperature approach will not
be useful for computational model validation, but it could
measure unexpected differences in process temperature that
may be indicative of an undesirable process change.
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The infrared (IR) camera used to view the AM process was
integrated by JHU/APL from commercially-available
components. At the heart of the camera was a “sensor engine”
based on a quantum well infrared photodetector (QWIP) focal
plane array (FPA) in an integrated dewar/cooler assembly
(IDCA) which uses a Stirling cycle mechanical cooler to cool
the FPA to 65 K. This camera is sensitive in the long
wavelength infrared (LWIR, wavelengths between 8 pm and
12 pm) spectrum. This spectral range was chosen because of
the inherently low thermal contrast for blackbody emission in
this band. That is, the rate of change of emitted power from
an object for a change in its temperature is low compared to
other regions of the spectrum. Unlike the detectors in the
LWIR microbolometer cameras that have come into
widespread use, the detectors in this FPA are photon detectors
and therefore are able to capture very fast phenomenology
(detector time constant < 1 ns). By contrast, microbolometer
cameras are thermal sensors with time constants on the order
of 10 ms. The full frame format of the FPA was 640x512
pixels but the camera was set up to only run the central
128x128 region of the array in order to enable a high frame
rate (1.313 kHz) to be achieved and the integration time used
for the experiment was 49 ps. The top of the AM chamber has
a port that is normally blanked off but for this experiment the
anodized aluminum blank was replaced by a zinc selenide
(ZnSe) window which was specified to have at least 70%
transmission in the pass-band of the camera. The setup is
shown in Fig. 2.

Build plate

Camera control/data
recording computer

Fig.2 In-situ IR camera set-up.

AM process parameters and coupon geometry

A total of 15 AISi10Mg coupons were built using various AM
parameters. The building process was continuously
monitored via a high-frequency in-situ infrared camera which
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had been integrated into a commercial metal powder system.
Each coupon has the dimension of Smm X 5 mm % 10 mm.
Table 1 lists the 5 different process parameters in this study.
Each parameter was repeated 3 times (“Al” represents
parameter A 1 repeat). Sample #C were built using vendor-
provided receipt and used as the benchmark. Its nominal
energy density was 100%. Other samples (A, B, D, E) were
built using modified nominal energy density in order to create
“artificial” defects. Laser power and scan speed were varied
to achieve different energy density.

Table 1. AM process parameters.

Sample # Energy Density Nominal Energy
(J/mm?®) density

A 12.48 25%

B 24.97 50%

C 49.93 100%

D 74.87 150%

E 99.87 200%

2 Specific parameter is not included due to vendor intellectual
property
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Fig.3 Examples of IR images at different times. Color
intensity represents radiance value. (“TALO” = Time
since first indication of laser)
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Collect IR camera data

The entire build process has been recorded using the IR
camera through the build of 76 min 9 sec (4569 s) at a frame
rate of 1300 Hz. 25 mm focal length /2.3 lens gave a pixel
size at the target of 0.76 mm (~6.5 pixels across each part).
The IR camera was calibrated using a cavity blackbody
source. There is a total over 6 million frames of images,
resulting in ~30GB of data. Fig. 3 shows some examples of
thermal images at different time steps. TALO in the figure
means the time since first indication of laser. The vertical line
seen in the imagery after about T+1200 s is due to an artifact
in the camera itself that could not be fully corrected out. The
area of artifacts will not be considered in the following
analysis.

MATERIAL CHARACTERIZATION

Material characterization of AISi10Mg coupons were focused
on porosity examination, since porosity is the type of defect
that causes the most concern. Two analytic methods, namely
optical microcopy analysis and x-ray computed tomography
(XRCT) analysis were used to examine all coupons built
using the 5 AM conditions. Details will be discussed below:

Optical microscopy analysis

AlSilOMg coupons were mounted in epoxy after the AM
build process. Coupons were ground using SiC papers down
to 1200 grit, and then polished using diamond suspension
which started at 9 um and finished at 0.5 um. Final polishing
was performed using 0.02 um colloidal silica. The orientation
of each coupon during grinding is shown in Fig. 4.

Original
Surface

Depth of
Cross Section

Label Built i
Into Part i
\ i Cross
i"/ Section

t

Build Direction

Fig.4 Coupon preparation for optical
microscopy characterization.

Fig. 5 shows the optical microscopy of the cross section of 5
coupons processed using increasing laser energy density.
Porosity can be seen in all coupons. A1 has the largest degree
of irregular shaped pores due to lack of fusion at low laser
energy density. Porosity is minimized in C1 which was
processed at near optimal laser energy density. DI and El
have increasing amounts of spherical pores compared to
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A1/B1 samples. Those spherical voids were likely generated
under keyhole phenomenon which formed at high laser
energy density. From Fig. 5, we can clearly tell the difference
of void size and geometry at different AM conditions. Lack-
of-fusion voids are irregular in shape, and have much lower
sphericity than keyhole voids. It should be noted that the top
region of all coupons look defect-free, because the last three
built-layers use the vendor’s default parameter (#C) which is
different from the designated condition. This is from the AM
machine default configuration, and applies to all other
samples (B-E).

Cl1 b ¥ D1
| ——————————a |
e ' W
P o. YRR
: - - . e -9
500 um
e

Fig. 5 Cross section of 5 coupons processed using
increasing laser energy density

X-ray Computed Tomography (XRCT) analysis

XRCT was performed on 10 coupons (A2, A3, B2, B3, C2,
C3, D2, D3, E2, E3) to identify the presence of porosity as
well as individual pore location, size, and geometry. The
scans were performed on a North Star Imaging (NSI) X050
system and the volume data reconstructed using NSI efX-CT
software. The resulting voxel resolution is 7.7 microns. Fig.
6 shows the XRCT coordinate system with respect to coupon
geometry (Fig. 6a). An example of a cross-section image
along the z-axis is also shown (Fig. 6b).
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Fig.6 (a) XRCT coordinate system; (b) example of
cross-section image across the z-axis.

Automated defect recognition (ADR) was performed using
Volume Graphics VGStudio MAX. ADR analysis results in a
comprehensive numerical representation of the porosity
within the sample. Fig. 7 shows representative XRCT results
with an overlay of the ADR results onto the 3D and cross-
section images.. The porosity is seen in color in both the 3D
and cross section images. The color scale is determined by the
pore volume (smaller volumes are blue and larger volumes
are red). Additionally, each individual defect or pore can be
analyzed with respect to its location and size. The results will
be correlated with corresponding IR thermal images to
establish the relationship of “process signal — defects” which
will be discussed in the next section. Also, XRCT provides
cumulative porosity results for each sample as shown in
Fig. 8. The average porosity aligns with observation in Fig. 5.
The vendor’s default parameter (#3) results in the least
porosity. In lack-of-fusion conditions (#A and #B), porosity
level increases with decrease of laser energy density, and
significant porosity volume occurs at nominal laser energy
(25% of optimal process condition). When nominal energy is
above 100% (#D and #E), porosity increases with increased
laser energy.

€/2) sentientScience
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Fig. 7 Representative XRCT results showing porosity of
different coupons. Colored pixel indicates pore location
and size, white dash line represents boundary of sample.
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Fig.8 Cumulative porosity volume for different AM
samples (5 AM conditions, 2 repeats).

DATA ANALYSIS TO CORRELATE
SENSING SIGNALS WITH PROCESS-
INDUCED DEFECTS

The entire AM build includes 336 layers with over 6 million
images recorded. A total of 30 images from the 10th layer to
300th layer at increments of 10 layers were analyzed in detail.
At each layer, the image at the time just before the deposition
of powder for the following layer was exported. Similarly,
XRCT data was exported into ASCII format as well. It
recorded every suspected void and its size, location, and
geometry. Then, those results were interpreted using two
methods: 1) a statistical analysis to correlate the overall
porosity level with sensing signal, and 2) individual void
analysis to evaluate the relationship between abnormal signal
and pore formation.

Statistical analysis

Fig. 9 shows the sensing signal along the distance in white
label at different building times. For each curve, the peak
region represents signals reflected from the un-melted powder
region between each coupon, and valley region represents
sintered coupons. It is found at each curve, each peak value is
similar with another, while the valley value varies across
different coupons. There is a general trend that coupons made
by lower laser density (e.g. #A) lead to a higher valley value.

Additionally, processed signals of each sample were averaged
at each layer. Fig. 10 shows the signal value that is averaged
across each layer. The signal gets stronger when more and
more layers are built. As seen in the figure, there are clear
differences among those samples which were built at different
energy levels.
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IR camera signal

Fig. 9 Radiance vs. distance profile at different times.

Average radiance

0.003

IR camera signal

0 50 100 150 200 250 300 350

Build layer #

Fig. 10 Averaged monitoring signal at specific layers.

Individual void analysis

Individual void analysis was also performed. It started by
analyzing the XRCT results by sorting the suspected voids
from largest diameter to smallest diameter. The top 5 largest
voids in each sample are used for analysis. So, a total of 50
voids have been analyzed. For each void, its coordinate was
extracted first, and then mapped into the coordinate system of
the thermal image. It is noted here that each sample
orientation in the build plate has been recorded during the AM
build process, so it is feasible to map the defect coordinates in
the thermal image. The criterion of “detecting” a defect is
based on abnormal signal variation at the void location. If the
sensing signal at the void location is abnormal and exceeds a
critical value, it was considered a “hit”, which confirmed that
sensing signal can reflect the defect. Otherwise, it was
considered a “miss”. Fig. 11 showed a typical “hit”, which is
represented by red dot. A void defect in sample D2 was
selected, and its coordinates were identified in the XRCT
results. Based on the defect’s Z coordinate, a relevant image
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frame will be selected for future analysis. Further, based on a
defect’s X and Y coordinates, a line that crosses the defect’s
location will be determined, and the corresponding sensing
signal can be plotted. Using this criterion, initially 11 out of
50 voids have been identified in the thermal image, while
most voids were not detected. This is due to several reasons:
1) samples A and samples E were built via unrealistic AM
conditions, and they have too many voids across the entire
samples which are very difficult to detect using current
detecting framework; 2) coupons were tilted in the thermal
camera, which causes some misalignment between sample
defects and image pixel; 3) some voids were located near the
sample edge and powder bed, so significant error occurred,
and 4) current image pixel size is around 0.76 mm, which is
relatively large compare to the void size.

Therefore, in the second analysis, voids from unrealistic AM
conditions (samples A & E) were excluded, and effects of
sample tilting, image artifact (samples C2 & B3 after 1200 s),
and edge effect were considered. The hit rate of the void was
approximately 76% (22 voids out of total 29 valid voids). It
should be noted that the monitoring accuracy can be further
increased by improving the resolution of thermal camera.

Pore location

Sample Coordinate x,y,z Pore diameter Layer #

# (mm) (mm)
0c D2 (1.85,1.59,7.94) 0.197 265
\ “ "o 'h"v
¥ ~‘Defect” signal i
¢ o \ ooy, A a W IN
o \ »d /e
v \ \ i i & ¢ B
' Pl
o i { - y 7
Fe ’ i Aivp i W
f | by . g
o ;" ¢ 4 - - -
1 L]
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Fig. 11 Detection of individual pore using sensing
signal.

ADVANCED AM PROCESS MODELING

AND VALIDATION
A series of computational modeling were performed using
Sentient’s DigitalClone® technique. Sentient’s

DigitalClone® is a physics-based computational modeling
and design framework that simulates the microstructure of
different components and their behavior, calculates internal
stresses caused by different applied loading conditions,
accumulated internal damage resulting in crack nucleation
and propagation, and investigates the performance and life
prediction. In the past few years, Sentient’s DigitalClone®
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has been enhanced to include an ICME (integrated
computational materials engineering) modeling framework
for part qualification in metal additive manufacturing (AM).
This physics-based multiscale model can be used to qualify
material and process parameters and requires minimal
calibration. Specifically, the DigitalClone® model can take
key AM process parameters (e.g. laser power, scan speed,
hatch strategy, layer thickness) as inputs, and simulate part-
level distortion and residual stress, as well as the
microstructure (e.g. grain structure, porosity) of as-build
parts, and fatigue performance when the part is used in the
field. In this study, Sentient’s DigitalClone® technique is
used to optimize defect-repair parameters. For any specific
defect, repair parameters need to be customized in order to
sufficiently correct existing defects while avoiding the
formation of new ones. Different types of simulation were
performed for a comprehensive analysis. Those simulations
include: 1) melt pool dimension modeling; 2) microstructure
and porosity modeling; and 3) defect repair modeling

Melt pool dimension modeling

3-dimensional (3D) heat transfer finite element analysis
(FEA) was used to simulate the melt pool dimension. In the
analysis, a physics-based heat source model was used that
considers major AM process parameters, including laser
power, scan speed, hatch space, layer thickness, etc. This will
correlate the process parameter with final melt pool
dimension, which eventually guides the defect repair action.

In addition to the physics-based heat source model, a solution-
dependent-variable (SDV) material model was also used to
dynamically update material’s properties due to materials
state transition (powder-liquid-solid) in AM building process.
Material properties significantly change when AM powder
transitions to liquid / solid state during the printing process,
and the property change will significantly affect simulation
accuracy. Sentient’s SDV material model can dynamically
adapt material properties to different material states, and this
ensures the simulation accuracy. Both heat source model and
material model were implemented in the commercial FEA
package ABAQUS to conduct the heat transfer analysis.
Table 2 shows the physical property of AISi10Mg used in this
simulation. Fig. 12 shows the finite element model to simulate
the temperature and materials state transition. Powder layer
was first melted due to laser heating, and then solidified in the
rapid cooling stage when the laser moved away. The
temperature history of each node can be obtained.

Table 2. AISi10Mg properties used in the simulation.

Material Density Thermal Specific heat

state (kg/m?) conductivity (J/kg-K)
(W/m*K)

*Powder 1350 0.5 915

Solid 2680 110 915

*Powder property is estimated.
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(b) Matl's state contour

Fig. 12 Finite element model to simulate the
temperature and material state transition (power-liquid-
solid).

Using the above thermal model, a set of single-track cases
with different process parameters has been simulated. It
intends to investigate the effect of process parameters on the
melt pool size and geometry. A comprehensive understanding
of melt pool geometry and size will allow good judgement for
defect repair conditions. Table 3 lists the process parameters
at different simulation condition.

Table 3. Process conditions for single-track simulation.

Case # Laser power  Scan speed Layer thickness
W) (mm/s) (pm)
1 125 1400 30
2 150 1400 30
3 200 1400 30
4 250 1400 30
5 300 1400 30
6 200 700 30
7 200 1000 30
8 200 1800 30
9 200 2000 30

Fig. 13 shows the resulting melt pool geometry at different
conditions. As the laser power increases, the melt pools
became larger and there size increases in all three dimensions
(length, width, and depth). When increasing the laser scan
speed, the melt pool tends to become shallower but longer.
Fig. 14 shows quantitative analysis, indicating that the melt
pool length is most sensitive to process parameters and the
melt pool width is the least sensitive. The various melt pool
sizes and geometries at different conditions should not be
neglected when performing defect repair.
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Fig. 13 (a) effect of laser power on melt pool geometry;
(b) effect of laser scan speed on melt pool geometry.

(a) 500
——length —#—width| —=—depth
400 —

—_— "x'_«_ __(““'/‘(‘«
g 300 — i
o —— ———
N 200
3
S 100 —
2 - o
]
s 0

100 150 200 250 300 350

Laser power (W)

(b) 400
—;.‘"A
300 T
€ =4 _ ——|ength
3 ~%
T.NT 200 = —width
.J.’ — —
100 : depth
0
500 1000 1500 2000 2500

Laser scan speed (mm/s)

Fig. 14 Quantitative analysis of melt pool size at
different laser power and scan speed.
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Microstructure and porosity modeling

In addition to single-track simulation, multi-layer and multi-
scan simulation was performed to simulate the microstructure
and porosity. Actual process conditions listed in Table 1 were
used in the simulation. This simulation was done by two steps:
1) thermal modeling in ABAQUS to simulate temperature
history; and 2) microstructure modeling in Sentient’s in-house
code to simulate porosity and grain structure.

In thermal modeling, a total of 20 scans were simulated at
each condition (4 layers, 5 scans / layer). Fig. 15 shows the
representative peak temperature contour from parameters #C
in Table 1. The color represents the peak temperature of each
location during the printing process. The other four conditions
(#A, #B, #D, #E) show a similar contour but have different
magnitudes. The peak temperature increases when increasing
laser density from #A to #E.

SDv2
(Avg: 75%)
+6,795e+03
- +6.237e+03
+5.678e+03
+5.120e+03
+4.562e+03

+4.0

Fig. 15 Representative 3D contour of peak temperature.

Fig. 16 shows the selected 2D cross section of 3D model. The
gray area represents the melted and re-solidified region.
Simulation results clearly showed the lack of fusion in
samples #A and #B, which aligned well with optical
microscopic results. Other samples are fully melted, and
therefore, it didn’t show lack-of-fusion voids in those
simulations. It is noted that the porosity due to excessive
energy density (samples #D and #E) cannot be captured by
commercial FEA software. That porosity will be considered
in Sentient’s in-code microstructure model.

€/} SentientScience

“Melt'pool

) LackK of fusion

Fig. 16 Cross section of 3D thermal modeling. (gray
color represents melted and re-solidified area).

Sentient’s microstructure model is a physics-based model that
predicts the grain size and morphology. The microstructure
model was coupled with thermal modeling, and it is capable
of predicting microstructure evolution in additive
manufacturing. Fig. 17 shows a general procedure of
modeling the microstructure. Thermal modeling is first
performed using 3D finite element analysis to calculate the
temperature evolution within AM build process. Then, the
temperature history in the cross-section of the FEA domain
will be projected to a 2D microstructure domain with refined
grid size. Finally, melting and solidification behavior will be
simulated in the microstructure model.

Microstructure
modeling

Thermal
modeling

Temperature
mapping

Fig. 17 General procedures to simulate microstructure
using Sentient’s physics-based model.
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After importing the simulated temperature history from
thermal modeling, the grain structure and relevant porosity
were predicted in the microstructure model for all five
conditions. Fig. 18 shows the simulated microstructure
results. Color represents grain orientation which ranges from
0° to 90 °. The black area represents voids. As seen from the
figure, predicted grain structures mostly show columnar
grains, which agrees well with experimental findings [7].
Also, both lack-of-fusion porosity and keyhole / boiling
porosity were predicted. The prediction of porosity agrees
with experimental results in two aspects: 1) at energy density
levels below optimal value, porosity decreases with increase
of energy density; while at energy density levels above the
optimal value, it increases with an increase of energy density;
and 2) voids appear more spherical at high energy density
samples (#D and #E) than the low energy density samples (#A
and #B).

Fig. 19 compared the predicted porosity levels to
experimental results. For the predicted porosity level there is
good agreement with experimental results in most cases,
except for sample #B which over-predicted the porosity. This
is possibly because condition #B is near the transition zone
from lack of fusion to fully melt, and the current thermal
model is not developed well enough to capture such
transition. This thermal model can be improved by calibrating
the model coefficients through building more coupon
samples.
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Fig. 18 Simulated microstructure of 5 AM conditions
used in this study.
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Fig. 19 Comparison of simulation and experiment
regarding porosity of 5 conditions.

Defect repair modeling

After validating the microstructure model, repairing artificial
defects via laser re-melting technique were computationally
tested using different parameters. Firstly, an initial printing
process was simulated. Certain process parameters were
intentionally selected to generate lack-of-fusion porosity as
shown in Fig. 20. As seen in the image, lack-of-fusion voids
occur between two neighboring melt pools. Then, defect
repair via laser re-melting was simulated after printing each
layer and before adding a new powder layer. During the laser
re-melting process, the layer hatch was offset from the initial
hatch in order to target the void region as shown in Fig. 21.
Table 4 lists the original build parameters, and 3 different
repair parameters. In the defect repair parameters, repair #1
uses the same parameters as the original build, but with the
offsetting hatch as shown in Fig. 21. Repair #2 and repair #3
increases the laser power to 200 W and 250W, respectively.

R o, =t N
’_VVI;W
Speed: 1675 mm/s
Hatch: 97.5 pm
Layer thickness: 30 um

Fig. 20 Simulation of initial build with artificial lack-
of-fusion porosity.
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Fig. 21 Schematic of hatch spacing in defect repair via
laser re-melting.

Table 4. Process parameters for defect repair.

Case # Laser Scan Layer
power speed thickness (pm)
W) (mm/s)
0 125 1675 30
(original build)
1 125 1675 30
2 200 1675 30
3 250 1675 30

Fig. 22 shows 3D modeling results from the original build (4
layers) and repairs (2 layers) using three conditions. As seen
from simulation results, repair case 1 used the same build
parameters, and there were very limited effects to fix the void.
Once increasing the laser power to 200 W, as in case 2, about
50% of the pores have been fixed via laser re-melting. Once
further increasing laser power to 250 W, as shown in case 3,
all of the pores are repaired, showing a fully dense part. This
set of simulation indicates that appropriate laser repair
parameters need to be determined to fix the in-sifu defects.
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Fig. 22 Defect repair modeling via laser re-melting
using different parameters

CONSTRUCTING PROCESS WINDOW FOR
OPTIMAL DEFECT-REPAIR
PARAMETERS

As discussed above, appropriate laser repair parameters are
required to fix the in-situ defects without causing additional
defects. Therefore, a process window needs to be created prior
to the actual AM build, so the optimal laser repair parameters
can be immediately determined based on size and geometry
of any void. Additional simulation was performed to obtain a
comprehensive study of parametric effects on melt pool size
and porosity. Laser power and laser scan speed will be used
as adjustable parameters for real-time laser repair purpose in
this study, because they are two of the adjustable parameters
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that need minimal control and configuration. Other AM
parameters (e.g. powder layer thickness, spot size) will be
fixed. Based on experimental coupon samples under 5
conditions (Table 1), additional laser parameters in simulation
were limited to the set that has nominal energy density
between sample B (50%) and sample D (150%). Any other
nominal energy density beyond this limitation has proven to
result in high porosity as shown in samples A and E.
Therefore, 36 additional simulation conditions have been
designed as shown in Table 5.

TableS. Simulation conditions for constructing
optimal process window.

Case # Laser power  Scan speed Nominal energy
W) (mm /s) density
P1S1 P1 S1 51%
P1S2 P1 S2 57%
P1S3 P1 S3 65%
P1S4 P1 S4 70%
P1S5 P1 S5 76%
P1S6 P1 S6 83%
P2S1 P1 S1 64%
P2S2 P1 S2 72%
P2S3 P1 S3 83%
P2S4 P1 S4 89%
P2S5 P1 S5 97%
P2S6 P1 S6 105%
P3S1 P1 S1 72%
P3S2 P1 S2 81%
P3S3 P1 S3 93%
P3S4 P1 S4 100%
P3S5 P1 S5 108%
P3S6 P1 S6 118%
P4S1 P1 S1 80%
P4S2 P1 S2 90%
P4S3 P1 S3 103%
P4S4 P1 S4 111%
P4S5 P1 S5 120%
P4S6 P1 S6 131%
P5S1 P1 S1 86%
P5S2 P1 S2 97%
P5S3 P1 S3 110%
P5S4 P1 S4 119%
P5S5 P1 S5 129%
P5S6 P1 S6 141%
P6S1 P1 S1 94%
P6S2 P1 S2 105%
P6S3 P1 S3 120%
P6S4 P1 S4 130%
P6S5 P1 S5 141%
P6S6 P1 S6 153%

® Laser power increases from P1 to P6, and scan speed
decreases from S1 to S6. Actual values are not shown due to
intellectual property reasons.
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Fig. 23 Representative simulation results at (a) low
laser energy density (P1S1); (b) moderate laser energy
density (P3S4); (c) high laser energy density (P5S5).

A total of 36 conditions have been simulated in Sentient’s
process model and microstructure model. In each simulation,
the melt pool size and porosity were analyzed. Fig. 23. shows
the representative results at 3 conditions (lower energy
density, moderate energy density, and high energy density).
Simulation results clearly show different temperature and
porosity results at different laser powers and speeds. By
incorporating the results from all 36 conditions, process
windows for printing Al1Si10Mg were plotted as shown in Fig.
24. In each figure, the x-axis represents laser power, and the
y-axis represents laser scan speed. The contour represents the
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intensity of objects (e.g. melt pool width, melt pool depth, and
porosity). These process windows provide a clear guideline to
choose appropriate parameters to repair the voids in real time.
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Fig. 24 Process windows in powder bed fusion of
AlSi10Mg alloy. (note: physical values are not
presented due to intellectual property.)

FOLLOW-ON WORK

The work described above has successfully demonstrated the
technical feasibility of in-situ monitoring the pore formation
in an aluminum alloy during a powder bed fusion process. It
also showed that appropriate process parameters are required
to correct any defect. The follow-on work is to fully integrate
the in-situ defect monitoring and correcting technique to
develop a prototype AM machine that has a closed-loop
feedback system which can automatically detects and repairs
defects during printing. To successfully achieve this goal, the
technical barrier of acquiring and processing enormous
amounts of sensing data in real time needs to be addressed.
There is also a need to solve the problem of dynamically
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determining optimal repair parameters in real time and
feeding commands to the machine control system. Sentient is
currently working with research institutes, an AM machine
vendor, as well as industrial original equipment manufacturer
(OEM) to address those technical barriers and integrate those
techniques to build a prototype AM machine with close-loop
feedback control capability.

CONCLUSIONS

This study demonstrates the technical feasibility of the in-situ
monitoring of defects and optimizing process parameters via
advanced simulation. Key results are listed below:

1) Sensing signal captured by a high-frequency IR camera
correlates with porosity defects well in powder bed
fusion process of aluminum alloy. Such sensing signals
can be used as an indicator to identify process-induced
defects in a powder bed fusion process.

2) Porosity defects are affected by laser energy density, with
low energy density resulting in lack-of-fusion voids that
have irregular shape, while high laser energy density
leads to keyhole / boiling voids which tend to be spherical
shape.

3) Sentient’s multiscale physics-based modeling technique
considers the effect of process parameters (e.g. laser
power and scan speed) on melt pool geometry,
microstructure, and porosity. A process window can be
generated using advanced simulation to optimize the
process parameters.

4) The current capability of defect monitoring and advanced
simulation are presented. A technical path has been
identified to demonstrate the feasibility of a closed-loop
feedback AM machine to in-situ monitor and correct
defects for an aluminum alloy component in a powder
bed fusion process. Follow-on work is described to
successfully achieve this goal.
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