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a b s t r a c t

In spite of their increasing popularity, managing the use of wind turbines has been exceptionally chal-
lenging. Through computational prognostics, Sentient Science determined that current operating lifetime
for a large number of turbines is only between five to thirteen years. Initial estimates indicate that
savings of $150,000 per turbine per gearbox replacement can be achieved using physics-based long-term
prognostics, leading to a substantial return of investment for wind farm operators. However, long-term
prognostics require a precise determination of the loads in all six degrees of freedom occurred on the
drive-train. One of these loadsdtorquedcan be directly estimated in situ from the historical data pro-
vided by the Supervisory Control and Data Acquisition (SCADA) system. In many cases, the historical data
only provides 10-min statistical values, and a common practice of reliability analysts is the calculation of
torque using only 10-min averages. Disregarding the load fluctuation within 10-min intervals of recorded
SCADA introduces a loss of accuracy in the resulting torque histogram that is indeed meaningful for an
accurate life prognostic. This paper introduces a novel improved-accuracy method for calculation of
torque histograms based on SCADA. Using 10-min distributions of power output and rotor speed, this
method is able to successfully reconstruct the distribution of instantaneous torque in between 10-min
intervals of recorded SCADA. The method predicts a high-torque region more dispersed that the cur-
rent method used in the industry, which introduces substantially different results when used in life
prognostics. Using this method in the lifing of a GE 1.5 SLE wind turbine, it is shown that the error in
predicted L50 is reduced by 10.1%.
© 2017 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Wind energy continues to grow in popularity as a source of
renewable energy. The U.S. Energy Information Administration
reports that, in 2016, 34% of all new U.S. energy generating capacity
was attributed to wind turbines [1]. However, managing the use of
wind turbines has been exceptionally challenging. Through
computational prognostics, Sentient Science determined that cur-
rent operating lifetime for a large number of turbines is only be-
tween five to thirteen years. This is much lower than the initial
expectation of lasting between 20 and 30 years. One of the major
components that experience premature failure is the gearbox, with
replacement costs that can range from $200,000 to $700,000 per
failure [2,3]. This means that wind farm operators can readily incur
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costs up to millions of dollars dealing with turbine failures.
In order to avoid critical failure and extend the life of the asset, a

significant research effort has been undertaken in the development
of methods for diagnostics and prognostics of wind turbine com-
ponents. A common practice in the wind industry is the use of a
diagnostics-only technology known as Condition-Based-
Monitoring (CBM) to evaluate the current as-is health state of
their assets. The methodology of CBM revolves around the concept
of fault detection by identifying patterns in sensor signal associated
to specific failure modes [4,5]. For instance, Kusiak and Verma [6]
used a data mining approach on temperature data to predict
bearing fault 1.5 h before occurrence; for gearbox diagnosis, several
vibration analysis techniques have been developed to detect fault
on sun and planet gears [7e9]. Providing a diagnostic of the current
health state, CBM systems warn operators of the need of mainte-
nance only after fault has initiated. Some CBM systems include
data-driven prognostic technology as well [10], but these systems
are able to predict the health state of a turbine up to a three-month
time frame only.
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Nomenclature

Physical parameters
t Torque (kNm)
P Distribution of power (kW) over a 10-min interval
mP Mean power (kW) over a 10-min interval
sP Standard deviation of power (kW) over a 10-min

interval
u Distribution of rotor speed (RPM) over a 10-min

interval
mu Mean rotor speed (RPM) over a 10-min interval
su Standard deviation of rotor speed (RPM) over a 10-min

interval
r Correlation between P and u

Dresðp k qÞ Residual between profiles p and q

pti , qti Normalized frequency of the bin corresponding to
torque ti in profiles p and q

Mathematical parameters
z, w Jointly normal variables
mz, mw Mean values of distributions z and w
sz, sw Standard deviations of distributions z and w
r Correlation between z and w
x, y Independent standard normal variables
a, b, s Translation parameters
r Rescaling parameter
U ¼ z

w Distribution of the ratio of normal variables
T ¼ aþx

bþy Distribution of the translated and rescaled ratio of
normal variables

fU, fT Density functions of U and T
fðtÞ ¼ t

r þ s Counter-rescaling, counter-translating function
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In contrast to the fleeting predictions done with CBM, long-term
predictions can be achieved using physics-based approaches.
Physics-based prognostics (also called model-driven prognostics)
combine physics of failure with measured data to calculate damage
accumulation and predict remaining useful life [11,12]. The general
methodology can be described as follows:

1. System analysis: The system is defined by detailing each com-
ponent's design and material specifications. Based on failure
reports, theory, and engineering experience, most-likely failure
modes are identified and corresponding components are chosen
for subsequent lifing.

2. Determining load spectra: Loadsdrivingeach failuremodeneed
to be determined. In the design stage of awind turbine, loads are
taken from standardized design load cases. For asset-specific
prognostics, loads in all degrees of freedom can be accurately
determined using aeroelastic models that consider the historical
wind and operation data recorded at the installed location.
Alternatively, the torquedwhich drives gearbox failuredcan be
directly estimated in situ from historical SCADA data.

3. Damage model: For each component and corresponding failure
mode, the rate of damage accumulation due to loads is calcu-
lated through a damage model that describes system dynamics
and damage kinetics.

4. Life prognostic: Using a Weibull reliability model, damage
accumulation on each failure mode is converted into failure
probability, and reliability values are used to estimate the ex-
pected life of each component.

In past years, physics-based models for common failure modes
in a variety of rotating machinery have been developed. Li et al.
developed models of micro-pitting [13] and scuffing [14] in lubri-
cated point contacts and applied them to a ball-on-disk contact.
Watson et al. [15] used a wear model to predict life of high-power
clutch systems. Kacprzynski et al. [16] built a crack initiation model
to predict remaining useful life in a H-60 helicopter's gear. Marble
and Morton [17] used a model to compute spall growth in an air-
craft's engine thrust bearing, concluding a window of about 100
flight hours to critical failure after initial fault; to this prognostic
method Bolander et al. [18] added diagnostics to detect the pres-
ence of a spall and reduce uncertainty in remaining useful life. The
epitome of physics-based prognostics technology is DigitalClone™,
a material-science-based simulation engine that predicts the
earliest point in time when cracks initiate in the microstructure of
rotating mechanical components [19,20].
In wind turbines, using physics-based prognostics technology it
is possible to identify the specific component and point in time
where and when failure will initiate, allowing to implement the
operation strategy or provide timely maintenance that will extend
the life of the turbine. Sentient's initial estimates indicate that
savings of $150,000 per turbine per gearbox replacement can be
achieved using physics-based long-term prognostics, leading to a
substantial return of investment for wind farm operators. However,
long-term prognostics require a precise determination of the loads
occurred on the drive-train.

Determining the actual loads experienced by the turbine can be
challenging. In the design stage of a turbine, load spectra are taken
from standardized design load casesdas defined by International
Electrotechnical Commission standards (IEC 61400-22) and/or the
guidelines and standards defined by Det Norske Veritas and Ger-
manischer Lloyd (DNVGL-ST-0437)dto certificate the turbine.
However, these standardized load cases cannot be used for asset-
specific life prediction since they are valid only as a generalization
and may not represent the environmental conditions that the tur-
bine is exposed to after commissioning.Once the turbine is installed,
the actual loads in all six degrees of freedom can be determined
using aeroelastic models that consider the turbine historical wind
and operation data captured at the installed location. However, this
approach is often avoided by reliability analysts due to its
complexity. Alternatively, one of these loadsdtorquedcan be
directly estimated in situ from historical SCADA data.

Torque is a major damage driver and therefore can be used as a
first start for lifing of the gearbox and other components. The tor-
que can be derived from instantaneous measurements of rotor
speed and power output. These measurements are recorded by the
turbine's Supervisory Control and Data Acquisition (SCADA) sys-
tem. For storage reasons, it is a common practice on SCADA systems
to record only 10-min-based statistical data, making available
mean, standard deviation, and min/max values of rotor speed and
power output every 10-min intervals. The historical distribution of
torque can be empirically built by agglomerating large volumes of
SCADA-based torque estimations into a histogram, resulting in a
distribution as the one shown in Fig. 1, which was built on six years
of SCADA collected in a GE 1.5 SLE turbine. In the torque histogram,
the endurance limit defines a threshold of loads that contribute to
failure in gearbox components. Theoretically, loads under the
endurance limit do not contribute to component failure, mean-
while loads over the endurance limit incur in damage accumulation
that eventually exhausts the life of the component; thus, accurately
assessing the frequency a turbine operates in the high-torque



Fig. 1. Torque histogram of a GE 1.5 SLE turbine built on six years of SCADA data using
10-min averages.
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region is critical for an accurate life prediction.
A common practice in industry and academia is the calculation

of torque by dividing mean values of power output and rotor speed
as recorded in SCADA every 10 min. For instance, Gray and Watson
[21] used this method to calculate the load in a gearbox bearing
damage model, and Al-Tubi et al. [22] built a torque histogram
through this method, which was used to derive probabilistic dis-
tributions of shaft torque of the gearbox HSS pinion gear and assess
risk of micro-pitting. Even though practical, this approach for
estimating torque disregards the fact that the information in SCADA
represents statistical distributions rather than instantaneous
measurements. The physical measurements being recorded fluc-
tuate in between the 10 min of recorded SCADA, and the instan-
taneous torque can be expected to fluctuate accordingly.
Disregarding this fluctuation introduces a loss of accuracy in the
resulting torque histogram that is indeed meaningful for an accu-
rate life prognostic.

Considering the importance of accuracy in the loads used for
physics-based prognostics, this paper introduces an improved-
accuracy method for calculation of torque histograms based on
historical 10-min-based SCADA data. In doing so, the current
method used in the industrydhereafter called Method 1dwill first
be described. Such method disregards any fluctuations in between
10-min intervals of recorded SCADA and calculates the instanta-
neous torque by dividing mean power output and mean rotor
speed. The method proposed in this paperdhereafter called
Method 2duses both 10-min distributions of power and rotor
speed to reconstruct the 10-min distribution of instantaneous tor-
que. Considering the torque as the ratio of normal variables power
and rotor speed, a statistical model will be developed based on
Marsaglia's method for ratios of normal variables [23,24]. Valida-
tionwill be provided by comparing resulting torque histograms to a
histogram built on instantaneous measurements obtained from
high-frequency SCADA sampled at 1 hz. Finally, the improved lifing
accuracy will be shown by independently using these three histo-
grams (Method-1, Method-2, and 1-hz histograms) in a life prog-
nostic on gearbox components of a GE 1.5 SLE wind turbine.

2. Methods

2.1. Method 1: simplified torque

Disregarding any fluctuations in between each 10 min of
recorded SCADA, the instantaneous torque is calculated as

t ¼ mP
2pmu∕60

(1)

with mP and mu mean power (kW) and mean rotor speed (RPM)
over such interval. The torque histogram is then built by agglom-
erating each t value calculated over each SCADA entry. Fig. 1 shows
a histogram built using this method over six years of historical
SCADA data collected on a GE 1.5 SLE turbine. This method is widely
used in industry for reliability analysis, and it can be seen imple-
mented in the work of Gray andWatson [21], and Al-Tubi et al. [22],
as previously mentioned.

2.2. Method 2: distributed torque

The fluctuation of torque in between each 10 min of recorded
SCADA can be determined dividing the 10-min distribution of po-
wer output by the distribution of rotor speed, resulting in a prob-
ability distribution of torque values for each 10-min interval of
recorded SCADA. This is depicted conceptually as

Thus, this method calculates the torque as the ratio of random
variables P and u. The following paragraphs are spent formalizing
this concept.

In 1965, Marsaglia encountered an application in medicine in
which estimating the life span of red cells depended on the
calculation of a ratio of normal variables, and he developed a sta-
tistical model we will now adapt for the calculation of the 10-min
torque distribution. As proposed by Marsaglia [23,24], the ratio z

w
of two jointly normal variates z,w with correlation rdafter trans-
lation and rescalingdcan be described by the ratio (a þ x)∕(b þ y),
with x,y independent standard normal variables and a,b non-
negative constants. The proposition is stated as follows:

‘‘r
�
z
w � s

�
is distributed as aþx

bþy and
z
w is distributed as 1

r

�
aþx
bþy

�
þ s’’

[24]
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Letting T,U be (a þ x)∕(b þ y) and z
w, respectively, Marsaglia

determines the density function of T to be
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with q ¼ bþatffiffiffiffiffiffiffiffi
1þt2

p .
Defining u ¼ fðtÞ ¼ t

r þ s and t ¼ f�1(u) ¼ (u � s)r, and applying
the theorem of change of variable to fT(t), the density function of z

w
(named fU(u)) is determined to be

fUðuÞ ¼ jrj fT ððu� sÞrÞ (3)



Fig. 2. Discretization of a 10-min torque distribution.
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Thus, the 10-min torque distribution will be calculated as the
ratio of normal random variables power (kW) and rotor speed
(RPM)dP and u, respectivelydas

t ¼ P
2pu∕60

(4)

On the underlying assumption of P and u to be jointly normally
distributed, P and 2pu∕60 will take the place of z and w, respec-
tively, when calculating parameters a,b,r,s. The torque probability
density function ft will then be calculated as fU in Eq. (3) (methods
for numerical implementation are described in the Appendix), with
the following parameters obtained from historical SCADA data:

mP: Mean power (kW) over a 10-min interval
mu: Mean rotor speed (RPM) over a 10-min interval
sP: Standard deviation of power (kW) over a 10-min interval
su: Standard deviation of rotor speed (RPM) over a 10-min interval
r: Correlation between P and u in such interval

Finally, the torque histogram is built by calculating the 10-min
torque distribution over each SCADA entry, discretizating each dis-
tribution in bins as shown in Fig. 2, and agglomerating all the bins in
a histogram. The following flowchart summarizes the overall pro-
cedure for calculating a torque histogram using Method 2:
Fig. 3. Speed-power histogram of a GE 1.5 SLE turbine.
The limitations of this method reside in the assumption that
power output and rotor speed are jointly distributed forming a
bivariate distribution, that both are normally distributed in be-
tween each 10-min interval of recorded SCADA, and that their
correlation r can be accurately estimated. The validity of these as-
sumptions will be evidenced later in this paper upon comparing the
resulting histogramwith high-frequency SCADA data (Section 3.2).

2.2.1. Power and rotor speed correlation
Since the correlation r between random variables P and u in Eq.

(2) is unknown, different assumptions will here be explored. This
parameter represents the mechanical relation between power
output and rotor speed throughout operation of the turbine. Con-
structing a bivariate histogram of power output and rotor speed
evidences that the correlation between these two variables changes
during different stages of operation. Fig. 3 shows the bivariate
histogram of two years of SCADA data obtained from a GE 1.5 SLE
turbine (bins of idle operation have been omitted). Three stages of
operation with distinctive correlation values can be identified: A
region of uncorrelation (r ¼ 0) while operating close to the cut-in
wind speed (P < 150 or u < 11.25), a region of direct correlation
(rz1) while ramping-up passed the cut-in wind speed
(150 > P > 800 or 11.25 < u < 17.75), and a transition back to
uncorrelation while approaching rated performance (P > 800 or
u > 17.75). Thus, r is dynamic and its current value needs to be
determined in order to calculate each 10-min torque distribution.
For each SCADA entry, r can be determined by identifying the
current operation stage of the turbine, which requires building and
exploring the bivariate power-speed histogram of the turbine being



Fig. 4. Comparison of torque histograms obtained through different correlation r

values using Method 2.

1 This turbine had been uprated to 1600 kW throughout the twelve months of
operation.

2 Mean torque values of the true distribution, Method 1, and Method 2 were
respectively 446, 463, and 467 kNm, differing from the true distribution on 3.8% for
Method 1 and 4.6% for Method 2. This overshoot of mean torque is attributed to an
underpredicted low-torque region in both methods. Method 2 resulted in a profile
discrepancy of 4% to the true distribution due to the disagreement in the low-
torque region, meanwhile Method 1 resulted in a discrepancy of 10% due to
disagreement in both low and high-torque regions.
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assessed. This process could be avoided by identifying a constant r
value that produces a similar torque histogram than when r is
calculated dynamically.

In order to identify a constant r value that could replace the
need for calculating r dynamically, three constant r values (0, 0.5,
and 0.85) and a dynamic rwere independently used to build torque
histograms on the same SCADA dataset, and resulting histograms
can be seen in Fig. 4 (r ¼ 0.5 is omitted). Mean torque values for
cases 0, 0.5, 0.85, and dynamic, were respectively 326.3, 329.6,
331.4, and 326.1 kNm, differing from the dynamic case on 0.1% for
r ¼ 0, 1.1% for r ¼ 0.5, and 1.6% for r ¼ 0.85. Using the Dres criteria
(explained in Section 2.3), it was determined a profile discrepancy
of 10.8% between the dynamic case and r ¼ 0.85, contrasted to a
discrepancy of only 0.8% for r ¼ 0.0. Thus, it is concluded that r ¼ 0
models the dynamic case with sufficient accuracy. This is explained
by noticing from Fig. 3 that a turbine is found in the ramp-up region
(rz1) only sporadically, operating most frequently either close to
the cut-in wind speed, or approaching rated performance. Subse-
quently, in this paper all evaluations of Eq. (2) will be done with
r ¼ 0.

2.2.2. Sensitivity analysis
In order to understand how parameters mP, mu, sP, su, and r will

affect the 10-min torque distribution given by Eq. (2), a sensitivity
analysis is here performed. Defining the default case mP ¼ 600 kW,
mu ¼ 15 RPM, sP ¼ 90 kW, su ¼ 0.8 RPM, r¼ 0, the parameters were
varied in the following ranges: 200 < mP < 1400 kW, 9 < mu < 21
RPM, 50 < sP < 130 kW, 0.8 < su < 3.2 RPM, and 0 < r < 0.90. The
resulting torque distributions are shown in Fig. 5. In Figs. 5a, 5c, and
5d, the dispersion increased with larger mP, sP, and su values, and in
Figs. 5b and 5e the dispersion increased as mu and r decreased. The
distribution deviated from a normal distribution attaining a posi-
tive skewness for high values of su (seeFig. 5d), and the same is
hinted for low values of mu (see Fig. 5b). The most relevant obser-
vation is that the torque distribution gets more dispersed at greater
values of mean torque, as seen in Figs. 5a and 5b. This observation
will later on explain a major difference in the high-torque region
between histograms obtained through Method 1 and Method 2,
which will be relevant for lifing analysis.

2.3. Comparing histograms

In order to quantify the discrepancy between histograms built
through the different methods, the following distance measure Dres

will be used:

Dresðp k qÞ ¼ 1
2

X
i

jpti � qti j (5)

where p and q are the histograms being compared, i the index of
each bin, and pti is the normalized frequency of the bin corre-
sponding to torque ti in p. Dresðp k qÞ, named ”residual between p
and q”, provides a scale 0 to 1 of discrepancy between profiles,
where a residual of 0 indicates identical profiles (or 0% discrep-
ancy), and 1 indicates perfectly dissimilar profiles (or 100%
discrepancy).

3. Results

3.1. Comparison of method 1 and method 2

Method 1 and Method 2 were independently used to construct
the torque histograms of four GE 1.5 SLE turbines over 24months of
SCADA data. The resulting histograms are compared in Fig. 6 and
Table 1. The histograms are almost identical in low and mid-torque
regions, but a dispersed high-torque region is observed in histo-
grams calculated through Method 2. This can be explained by the
fact that Method 2 accounts for fluctuations of torque in each 10-
min interval, and that 10-min torque distributions tend to be
more dispersedwith a highermean torque, as previously evidenced
in the sensitivity analysis (Section 2.2.2). Method 2 resulted in
mean torques 7.2%e9.0% higher than Method 1, and profile dis-
crepancies (Dres) between 5.4% and 6.0%, which is attributed to the
high-torque region. A second dataset obtained from a different site
(three GE 1.5 SLE turbines with 32 months of SCADA) displayed
similar dispersions in the high-torque region, resulting in mean
torques 4.8%e9.6% higher with Method 2, and profile discrepancies
between 9.0% and 14.8%.

Method 2 conclusively shows a substantial difference charac-
terizing the high-torque region. The damage accumulated in
gearbox components is directly related to the frequency a turbine
operates in the high-torque region; therefore, accurately assessing
this region is critical for an accurate life prediction. In consequence,
if Method 2 correctly models the true torque distribution, the high-
torque dispersion captured through this method gives a strong
reason to prefer it in lifing.
3.2. Validation

In order to validate the statistical model that Method 2 imple-
ments, instantaneous measurements of power output and rotor
speed on a GE 1.5 SLE turbine1 were recorded every 1 s for twelve
months along with 10-min-based SCADA data. With this data, the
true torque distribution was built directly from the empirical
instantaneous torque. Fig. 7 compares the true torque distribution
to the histograms obtained through Method 1 and Method 2,
showing that the dispersed high-torque region predicted by
Method 2 is ratified by the true distribution. With a profile
discrepancy of 4% between Method 2 and the true distribution,2



Fig. 5. Effects of parameters mP, mu, sP, su, and r on the 10-min torque distribution. Solid black line corresponds to the default case.
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Fig. 6. Comparison of torque histograms obtained through Method 1 and Method 2 over 24 months of SCADA data collected on GE 1.5 SLE turbines.

Table 1
Comparison of torque histograms obtained through Method 1 and Method 2.

Mean Torque (kNm) Mean Torque Difference Profile Discrepancy (Dres)

Method 1 Method 2

Turbine A1 278 301 7.3% 6.0%
Turbine A2 271 293 8.1% 5.4%
Turbine A3 293 319 9.0% 6.0%
Turbine A4 304 326 7.2% 5.8%

Fig. 7. Comparison of torque histograms obtained through Method 1 and Method 2 to
the true torque distribution (values of idle operation have been discarded).

3 Relative to the L50 calculated using the true distribution.
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this agreement proves that the statistical model is able to recover
information that was lost in the process of packing instantaneous
measurements into 10-min-based SCADA data. Thus, it is concluded
that Method 2 satisfactorily models the true torque distribution,
successfully capturing the fluctuation of torque in each interval of
recorded SCADA.
3.3. Improvement in lifing accuracy

In order to illustrate the accuracy that is gained when Method 2
is used in physics-based prognostics, a lifing analysis based on ISO
281:2007 was performed on two bearings of the GE 1.5 SLE turbine
mentioned in Section 3.2 using the torque histograms obtained
from Method 1, Method 2, and the true torque distribution. Since
the derivation and detailed analysis of the lifing calculation is
outside the scope of this paper, only L50 values will here be re-
ported and compared.

Using Miner's rule to model cumulative damage, the three tor-
que histograms shown in Fig. 7 were independently used to
calculate L50 of the two bearings. The bearing supporting the low
speed intermediate shaft at the rotor side (LSIS-RS bearing) was
predicted to have a L50 of 14.03 years with Method 1, 12.74 with
Method 2, and 12.67 with the true torque distribution, meanwhile
the bearing supporting the planet shaft at the rotor side (PS-RS
bearing) was predicted a L50 of 6.36 years withMethod 1, 5.96 with
Method 2, and 5.91 with the true distribution. Assuming that the
damage model used in this analysis accurately models the damage
kinetics of the system, Method 1 introduced an error3 of 10.7% in
the predicted L50 of the LSIS-RS bearing, and 7.6% for the PS-RS



Fig. A.1. Comparison of approaches for evaluating Eq. (2) over extreme case
½mP ;mu; sP ; su; r� ¼ ½600;15:0; 90; 80:0 ; 0�.
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bearing, meanwhile Method 2 introduced errors of only 0.6% and
0.8% for LSIS-RS and PS-RS, respectively. Thus, by using Method 2
the error was reduced in a 10.1% for LSIS-RS and 6.6% for PS-RS.

4. Conclusion

A novel method to determine the torque histogram based on
SCADA has been introduced, and its application in physics-based
prognostics evidenced a greater accuracy over the method
currently used in the industry. Using 10-min distributions of power
output and rotor speed, the method was able to successfully
reconstruct the distribution of instantaneous torque in between 10-
min intervals of recorded SCADA, predicting large fluctuations of
torque in intervals of high mean torque leading to a very dispersed
high-torque region. This prediction was validated with high-
frequency SCADA data. The use of the proposed method in the lif-
ing of a gearbox showed a L50 error only as high as 0.8%, meanwhile
it was shown that the method currently used in the industry
introduced an error as high as 10.7%. Using the method proposed in
this paper, the max error was reduced by 10.1%. In conclusion, the
new method proposed in this paper is recommended for lifing
analysis due to its greater accuracy. The oldmethod can still be used
as a preliminary estimation of torque, but it must be kept in mind
that this method undercuts the high-torque region, overestimating
life in gearbox components.

Since the validity of the new method resides in the assumption
that power output and rotor speed are jointly distributed forming a
bivariate distribution, and that both are normally distributed in
between each 10-min interval of recorded SCADA, it is proposed for
a future research the study of operation conditions when these
assumptions may not be valid.
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Appendix A. Approaches for Evaluating Eq. (2)

Since the second term in the parenthesis of Eq. (2) involves an
exponential factor that can easily overflow a floating point preci-
sion, multiplied by an integral factor requiring numerical evalua-
tion, the evaluation of Eq. (2) is not trivial. In search for an approach
that can ease the computation of torque histograms in an intensive
workflow, three different methods were explored. For a compari-
son on computation efficiency and numerical accuracy, the three
approaches were tested on a data set consisting of 24 months of
SCADA data collected from a single GE 1.5 SLE turbine, and results
are here below reported.

A.1. Direct numerical integration

The integral factor can be directly evaluated numerically. To do
so, Romberg's method of integration was implemented in a Python
script, with a tolerance of 1%. In order to evaluate the exponential
factor, it was determined that any value of q > 37 would overflow
the floating point precision; thus, for any q higher than 37 the
scheme was switched to a symbolic computation scheme through
the package Sympy.

This method resulted in a computation time unfeasible for any
intensive workflow, indicating the need for a more effective
approach. The histogram resulted in a mean torque of 321.77 kNm.
A.2. Transformation to erf

Dealing with pixel noise in astronomical measurements, Mel-
chior and Viola [25] implemented Marsaglia's distribution noticing
that the integral can be indirectly evaluated by transforming it into
an error function as follows:
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By using an efficient erf evaluation method (Scipy package), the
computationwas reduced to only 5% of the total time used through
the direct integration approach, proving to be 20 times faster. The
calculated torque histogram had a mean torque of 321.84 kNm, and
a discrepancy of 0.013% to the direct integration approach.
A.3. Avoiding Eq. (2)

Marsaglia proposed in Ref. [24] that the aþx
bþy transformation can

be avoided by simply assuming w > 0. With such assumption, the
PDF of the ratio of normal random variables U ¼ z

w is given directly
by

fUðuÞ ¼f

0
B@ mwu� mzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2z � 2rszswuþ s2wu2
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�
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�3
2
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where f is the standard normal density.
It is important to notice on Eq. (A.4) that, even though in most

situations the PDF resembles the true density distribution given by
Eq. (2), in extreme cases it produces odd results as exemplified in
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Fig. A.1. This is due to the numerator
mws

2
z � rszswmz þ ðmzs2w � rszswmwÞu becoming negative when

u<�ðmwsz�rswmzÞ
mzsw�rszmw

with mzsw � rszmw > 0, and in the negative when

not.
This method achieved a similar time than the erf trans-

formation, resulting in a mean torque of 324.18 kNm, and a
discrepancy of 0.563% to the direct numeral integration approach,
and 0.558% to the erf transformation approach.
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